
NoSQL & Informix
The Power of Hybrid – Informix and JSON

Andreas Weininger
Andreas.Weininger@de.ibm.com

© 2014 IBM Corporation

Why MongoDB

 Rapid Application Prototyping
– Schema rides as objects inside the JSON Script, not as a separate item. Allows

for constant unit test and retest as logic expands
• Schemas change quite quickly in modern apps as business needs change.
• Apps have shorter production lives and even shorter life-cycles as a result
• Knows and understands JSON natively.
• No need to normalize per se.
• 1 to 1 and many to 1 RDBMS relationships do not apply here.

– Less bureaucratic
• Stripped down IS organizations, lean and mean
• Programmer can be the DBA, system administrator as well.

 Scalability
– Scalability is not by database tuning per se and adding resources, but rather by

sharding (fragmenting the data by a key) the data when necessary across
cheap, inexpensive commodity network hardware

• Automatic data rebalancing across shards by key occurs during the shard operation.

 Costs of initial “up and running” are less
 Quicker project completions times

© 2014 IBM Corporation2

Why MongoDB - Business

 600+ Customers worldwide
 5,000,000+ Free Software Downloads
 Enterprise Big Data customers
 Training is Free
 Charges for Services as an add on, complimentary business

– Backup/Restores
– Consulting

© 2014 IBM Corporation3

Partnership with IBM and MongoDB

 MongoDB and IBM announced a partnership in June 2013

 There are many common use cases of interest addressed by
the partnership
– Accessing JSON Data in DB2, Informix MongoDB using JSON query
– Schema-less JSON Data for variety of applications
– Making JSON data available for variety of applications
– Securing JSON Data

 IBM and MongoDB are collaborating in 3 areas:
– Open Governance: Standards and Open Source
– Technology areas of mutual interest
– Products and solutions

© 2014 IBM Corporation4

NoSQL Market Data

 2011: Market Research Media noted
worldwide NoSQL market was
expected to reach ~$3.4B by 2018,
generating $14B from 2013-2018
with a CAGR of 21%

 Comparison: data implies NoSQL
market ~$895M

– MySQL in 2011 ~$100M

"NoSQL is in its infancy, many immature with only
community support and limited tool capability;
however, expect to see a few used more widely
during the next 5 years."

"Current adoption of NoSQL in enterprises is 4% in
2010. expected to double by 2014, and grow to
20% by 2015. 10% of existing apps could move to
NoSQL. [Sept 2011]

"MongoDB is the new MySQL."

2
0

1
0

2
0

1
5

2
0

1
4

© 2014 IBM Corporation5

Informix and MongoDB Have Free Editions

Editions Informix MongoDB

Free Developer
Innovator-C

Basic

For Purchase Express, Workgroup,
Advanced Workgroup,
Enterprise, Advanced
Enterprise

Standard,
Enterprise

© 2014 IBM Corporation6

MongoDB Subscriptions

Basic Standard Enterprise

Edition MongoDB MongoDB MongoDB
Enterprise

Support 9am-9pm local, M-F 24x7x365 24x7x365

License AGPL Commercial Commercial

Emergency Patches Not Included Included Included

Price $2,500 / Server / Year $5,000 / Server /
Year

$7,500 / Server /
Year

Subscription information obtained from 10Gen site, June 26, 2013.

Additional monthly charges for backup services.

© 2014 IBM Corporation7

Price Point Comparison Estimate, 3-year cost
Dual Core Intel
Nehalem

Innovator-C Express
(4 core, 8 GB,
2 nodes)

Workgroup
(16 core, 16 GB,
unlimited nodes)

Product Cost $0 $8,540 $19,740

Support Subscription
 Year 1
24 x 7 x 365
Production System Down
Development Call
Emergency Patches
Free Upgrades

$1,680 Included Included

Support Renewal Year
2

$1,680 $1,708 $3,948

Support Renewal Year
3

$1,680 $1,708 $3,948

Total $5,040 $11,956 $27,636

MongoDB Enterprise, 3-year cost: $22,500

Subscription information obtained from 10Gen site, June 26, 2013.
Retail U.S. prices subject to change, valid as of June 26, 2013.

© 2014 IBM Corporation8

Informix as a Hybrid Data Storage Database

 Many of MongoDB’s 600+ customers are enterprise that have both
relational and non-relational data sitting in the same facility and need
to make sense of the data they have for business purposes.

 MongoDB has no transaction capabilities in the SQL sense
– Informix will enforce transactions on all application statements, with consistency

assured at the end of the transaction, MongoDB does not assure here and
cannot

• It is possible that in MongoDB that 4 out of 7 deletes will delete and at the end the
other 3 remain, to be dealt with manually …… someday.

 Joining noSQL and SQL based queries in the same statement is not
possible within MongoDB
– Many customers using MongoDB in production circumstances with large

document store databases need to join this data to their existing SQL based
database repositories for business purposes, often stored, housed and queried
separately:

• Informix can join the two kinds of data
 Document store portion stored natively in a BSON as a single row data type within Informix,

accessed as JSON, with a set full set of functions to access the document store data.
© 2014 IBM Corporation9

NoSQL – Feature Checklist

© 2014 IBM Corporation

JSON Features in Informix

Flexible Schema  Use BSON and JSON data type.
 Complete row is stored in a single column
 BSON, JSON are multi-rep types and can store up to 2GB.

Access Key Value
Pairs within JSON

 Translate the Mongo queries into SQL expressions to access key-
value pairs.

 Informix has added expressions to extract specific KV pairs.
 Select bson_new(data, “{id:1, name:1, addr:1}”) from tab;

Indexing  Support standard B-tree index via functional indexing.
 Type Less Index  Create index ix_1 on t(bson_extract(data,

“id”);
 Typed Index  Create index ix_2 on t(bson_value_lvarchar(data,

“name”), bson_value_date(data, “expire”);
 Informix also supports indexing bson keys with different data

types.

Sharding  Supports range & hash based sharding.
 Informix has built-in technology for replication.
 Create identical tables in multiple nodes.
 Add meta data for partitioning the data across based on range or

hash expressions.

© 2014 IBM Corporation11

JSON Features in Informix

Select  Limited support required for sharding, Mongo API disallowing joins.
 The query on a single sharded table is transformed into a federated

UNION ALL query; includes shard elimination processing.

Updates
(single node)

 INSERT: Simple direct insert.
 DELETE: DELETE statement with WHERE bson_extract() > ?; or

bson_value..() > ?
 UPDATE:
 bson_update(bson, “update expr”) will return a new bson after

applying the bson expression. Simple updates to non_sharded tables
will be direct UPDATE statement in a single transaction.

 UPDATE tab bsoncol = bson_update(bsoncol, “expr”) where …

Updates
(sharded env)

 INSERT – All rows are inserted to LOCAL shard, replication threads will
read logs and replicate to the right shard and delete from local node (log
only inserts underway).

 DELETE – Do the local delete and replicate the “delete statements” to
target node in the background

 UPDATE – Slow update via select-delete-insert.

Transaction  Each statement is a distinct transaction in a single node
environment.

 The data and the operation is replicated via enterprise replication.

© 2014 IBM Corporation12

JSON Features in Informix

Isolation levels  NoSQL session can use any of Informix isolation levels.

Locking  Application controls only on the node they’re connected to.
 Standard Informix locking semantics will apply when data is

replicated and applied on the target shard.

Hybrid Access
(From MongoAPI
to relational
tables)

 INSERT – All rows are inserted to LOCAL shard, replication threads will
read logs and replicate to the right shard and delete from local node
(log only inserts underway).

 DELETE – Do the local delete and replicate the “delete statements” to
target node in the background

 UPDATE – Slow update via select-delete-insert.

Hybrid Access
(From SQL to
JSON data)

 Directly get binary BSON or cast to JSON to get in textual form.
 Use expressions to extract to extract specific key-value pairs.

NoSQL collections will only have one BSON object in the table. We
can “imply” the expressions when the SQL refers to a column.

 SELECT t.c1, t.c2 from t;  SELECT bson_extract(t.data,
“{c1:1}”), bson_extract(t.data, “{c2:1}”) from t;

© 2014 IBM Corporation13

 Clients exchange BSON document with the server both for queries and
data.

 Thus, BSON becomes a fundamental data type.
 The explicit key-value(KV) pairs within the JSON/BSON document will be

roughly equivalent to columns in relational tables.
 However, there are differences!

– The type of the KV data encoded within BSON is determined by the client
– Server is unaware of data type of each KV pair at table definition time.
– No guarantees that data type for each key will remain consistent in the collection.
– The keys in the BSON document can be arbitrary;
– While customers exploit flexible schema, they’re unlikely to create a single

collection and dump everything under the sun into that collection.
– Due to the limitations of Mongo/NoSQL API, customers typically de-normalize the

tables
• (customer will have customer+customer addr + customer demographics/etc) to avoid

joins.

Flexible Schema

Flexible Schema – Informix Implementation

 Informix has a new data type, BSON, to store the data.
 Informix also has a JSON data type to convert between binary and

text form.
 BSON and JSON are abstract data types (like spatial, etc).
 BSON and JSON multi-representational types.

– Objects up to 4K is stored in data pages.
– Larger objects (up to 2GB) are stored out of row, in BLOBs.

• MongoDB limits objects to 16MB

 This is all seamless and transparent to applications.

© 2014 IBM Corporation15

Flexible Schema – Informix Implementation

 CREATE TABLE customer (data BSON)

 BSON is the binary representation of JSON.
– It has length and types of the key-value pairs in JSON.

 MongoDB drivers send and receive in BSON form.

© 2014 IBM Corporation16

Accessing KV pairs within JSON
 Extract Expressions/functions returning base type

bson_value_bigint(BSON, “key”);
bson_value_lvarchar(bsoncol, “key.key2”);
bson_value_date(bsoncol, “key.key2.key3”);
bson_value_timestamp(bsoncol, “key”)
bson_value_double(bsoncol, “key”);
bson_value_boolean(bsoncol, “key”);
bson_value_array(bsoncol, “key”);
bson_keys_exist(bsoncol, “key”);
bson_value_document(bsoncol, “key”)
bson_value_binary(bsoncol, “key”)
bson_value_objectid(bsoncol, “key”)

 Expression returning BSON subset. Used for bson indices.
bson_extract(bsoncol, “projection specification”)

 Expressions to project out of SELECT statement.
bson_new(bsoncol, “{key1:1, key2:1, key3:1}”);
bson_new(bsoncol, “{key5:0}”);

© 2014 IBM Corporation17

Accessing Key-Value (KV) pairs within JSON.

Mongo Query SQL Query

db.customers.find(); SELECT SKIP ? data::bson FROM customers

db.customers.find({},
{num:1,name:1});

SELECT SKIP ? bson_new(data, '{ "num" : 1.0 ,
"name" : 1.0}')::bson FROM customers

db.customers.find({},
{_id:0,num:1,name:1});

SELECT SKIP ? bson_new(data, '{_id:0.0,
"num" : 1.0 , "name" : 1.0}')::bson FROM
customers

db.customers.find({status:”A”}) SELECT SKIP ? data::json FROM customers
WHERE bson_value_lvarchar(data,"status")=
“A"

db.customers.find({status:”A”},
{_id:0,num:1,name:1});

SELECT SKIP ? bson_new(data, '{ "_id" : 0.0 ,
"num" : 1.0 , "name" : 1.0}')::bson FROM
customers WHERE bson_extract(data, 'name') =
“A”

© 2014 IBM Corporation18

Indexing
 Supports B-Tree indexes on any key-value pairs.
 Indices could be on simple basic type (int, decimal) or BSON
 Indices could be created on BSON and use BSON type comparison
 Listener translates ensureIndex() to CREATE INDEX
 Listener translates dropIndex() to DROP INDEX

© 2014 IBM Corporation19

Sharding

© 2014 IBM Corporation

Mongo Sharding

© 2014 IBM Corporation21

MongoDB SHARDING (roughly)

 Shard a single table by range or hashing.
 Mongos will direct the INSERT to target shard.
 Mongos tries to eliminate shards for update, delete, selects as well.
 FIND (SELECT) can happen ONLY a SINGLE table.
 Mongos works as coordinator for multi-node ops.
 Once a row is inserted to a shard, it remains there despite any key

update.
 No transactional support on multi-node updates.

– Each document update is unto its own.

© 2014 IBM Corporation22

Informix Sharding

App Server
Mongo Driver

Listener
JDBC

Enterprise replication + Flexible Grid

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

Location/1

Sales/1

Customer/1

Location/2

Sales/2

Customer/2

Location/3

Sales/3

Customer/3

Location/4

Sales/4

Customer/4

Location/5

Sales/5

Customer/5

Location/6

Sales/6

Customer/6

Informix/1 Informix/3 Informix/4 Informix/5 Informix/6Informix/2

© 2014 IBM Corporation23

Informix Sharding + High Availability
App Server

Mongo Driver

Listener
JDBC

Enterprise replication + Flexible Grid

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

Informix/1
Primary

Informix/1
SDS/HDR

Informix/1
RSS

Informix/2
Primary

Informix/2
SDS/HDR

Informix/2
RSS

Informix/3
Primary

Informix/3
SDS/HDR

Informix/3
RSS

Informix/4
Primary

Informix/4
SDS/HDR

Informix/4
RSS

Informix/5
Primary

Informix/5
SDS/HDR

Informix/5
RSS

Informix/6
Primary

Informix/6
SDS/HDR

Informix/6
RSS

© 2014 IBM Corporation24

Transactions (single node)
 Mongo does not have the notion of transactions.

– Each document update is atomic, but not the app statement

 For the first release of Informix-NoSQL
– By default, JDBC listener simply uses AUTO COMMIT option
– Each server operation INSERT, UPDATE, DELETE, SELECT will be

automatically be committed after each operation.
• No locks are held across multiple application operations.

© 2014 IBM Corporation25

Transactions (sharded environment)
 In sharded environment, mongo runs databases via two different

instances: mongos and mongod.
– Mongos simply redirects operations to the relevant mongod.
– No statement level transactional support.

 Informix
– Does not have the 2-layer architecture
– The server the application connected to becomes the transaction coordinator
– Does have the 2-phase commit transaction support

• Unused for NoSQL presently.
– INSERT, UPDATE, DELETE direct thru Enterprise Replication as always.

© 2014 IBM Corporation26

MongoDB Application Source Drivers & Informix
Where new business for IBM is likely from

© 2014 IBM Corporation

MongoDB Drivers – The Power of Hybrid

 One of the big secrets here is what the MongoDB company, formerly
known as 10Gen, does not have to do.

 Lots of user community support for the product and its drivers.

 With the new MongoDB client interface to Informix as a hybrid data
store, there are a series of MongoDB officially supported drivers, They
are formally listed as the MongoDB “ecosystem” and linked to on the
website for MongoDB.

 These have support from MongoDB directly as a corporation and also
broad support from the MongoDB user community

 And now, those users can be part of the Informix “ecosystem” as well.

 A whole new universe:
– to go, where Informix has not gone before.

© 2014 IBM Corporation28

Client Applications  New Wire Protocol Listener supports
existing MongoDB drivers

 Connect to MongoDB or Informix with
same application!

MongoDB
native Client
MongoDB

native Client

MongoDB
web browser

MongoDB
web browser

MobileMobile

Applications

MongoDB
Wire

Protocol

Informix
12.1

MongoDB
driver

MongoDB
driver

MongoDB

© 2014 IBM Corporation29

MongoDB Drivers – Officially Supported (1)

 With the new MongoDB client interface, with Informix as a hybrid
data store, there comes a whole new world of drivers necessary
for programmers to access and interface Informix, thru mongo:

 C
– C Driver Library

 C++
– C++ Driver Library
– Download and Compile C++ Dri

ver
– Getting Started with the C++ Dri

ver
– SQL to mongo Shell to C++
– C++ BSON Helper Functions
– C++ BSON Array Examples

 C#
– CSharp Language Center
– CSharp Community Projects
– Getting Started with the CSharp

Driver
– CSharp Driver LINQ Tutorial
– Serialize Documents with the CS

harp Driver
– CSharp Driver Tutorial

 Erlang
– Erlang Language Center

© 2014 IBM Corporation30

http://docs.mongodb.org/ecosystem/drivers/c/
http://docs.mongodb.org/ecosystem/drivers/cpp/
http://docs.mongodb.org/ecosystem/tutorial/download-and-compile-cpp-driver/
http://docs.mongodb.org/ecosystem/tutorial/download-and-compile-cpp-driver/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-cpp-driver/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-cpp-driver/
http://docs.mongodb.org/ecosystem/drivers/cpp-to-sql-to-mongo-shell/
http://docs.mongodb.org/ecosystem/drivers/cpp-bson-helper-functions/
http://docs.mongodb.org/ecosystem/drivers/cpp-bson-array-examples/
http://docs.mongodb.org/ecosystem/drivers/csharp/
http://docs.mongodb.org/ecosystem/drivers/csharp-community-projects/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-linq-queries-with-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/serialize-documents-with-the-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/serialize-documents-with-the-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-csharp-driver/
http://docs.mongodb.org/ecosystem/drivers/erlang/

MongoDB Drivers – Officially Supported (2)
 Java

– Java Language Center
– Java Types
– Java Driver Concurrency
– Java Driver Replica Set Semant

ics
– Getting Started with Java Driver
– Java Driver and Aggregation F

ramework
– Java DBObject to Perform Save

s
 JavaScript

– JavaScript Language Center
 Node.js

– Node.js Language Center
 Perl

– Perl Language Center
– Contribute to the Perl Driver

 PHP
– PHP Language Center
– PHP Libraries, Frameworks and

Tools
 Python

– Python Language Center
– Write a Tumblelog Application

with Flask and MongoEngine
 Ruby

– Ruby Language Center
– Ruby External Resources
– MongoDB Data Modeling and Ra

ils
– Getting Started with Rails
– Getting Started with Rails 3

 Scala
– Scala Language Center

© 2014 IBM Corporation31

http://docs.mongodb.org/ecosystem/drivers/java/
http://docs.mongodb.org/ecosystem/drivers/java-types/
http://docs.mongodb.org/ecosystem/drivers/java-concurrency/
http://docs.mongodb.org/ecosystem/drivers/java-replica-set-semantics/
http://docs.mongodb.org/ecosystem/drivers/java-replica-set-semantics/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-aggregation-framework-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-aggregation-framework-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-java-dbobject-to-perform-saves/
http://docs.mongodb.org/ecosystem/tutorial/use-java-dbobject-to-perform-saves/
http://docs.mongodb.org/ecosystem/drivers/javascript/
http://docs.mongodb.org/ecosystem/drivers/node-js/
http://docs.mongodb.org/ecosystem/drivers/perl/
http://docs.mongodb.org/ecosystem/drivers/perl-internals/
http://docs.mongodb.org/ecosystem/drivers/php/
http://docs.mongodb.org/ecosystem/drivers/php-libraries/
http://docs.mongodb.org/ecosystem/drivers/php-libraries/
http://docs.mongodb.org/ecosystem/drivers/python/
http://docs.mongodb.org/ecosystem/tutorial/write-a-tumblelog-application-with-flask-mongoengine/
http://docs.mongodb.org/ecosystem/tutorial/write-a-tumblelog-application-with-flask-mongoengine/
http://docs.mongodb.org/ecosystem/drivers/ruby/
http://docs.mongodb.org/ecosystem/drivers/ruby-resources/
http://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/
http://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-ruby-on-rails/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-ruby-on-rails-3/
http://docs.mongodb.org/ecosystem/drivers/scala/

MongoDB Drivers – Community Supported (1)

 There is a large and vast MongoDB user community for the support
and maintenance of various drivers used in interfacing MongoDB not
officially supported by MongoDB.

 They are programmers or dba’s controlling a database in many
cases and are interested in getting solutions to complex
programming and database technical issues.

 They experiment and try out new technologies, as such they
represent a new frontier for Informix. They support the drivers they
use thru the standard modern day Internet forums, chat rooms, code
repositories, etc.
– These ecosystems outside of the MongoDB official environment are testament

to the large user community following it has developed.
– In part, its why they presently have 25% market share in the document store

aspect of the database marketplace.
– The drivers are numerous ……… worth looking at briefly.
– Perhaps one of your customers is using one of these …….

© 2014 IBM Corporation32

MongoDB Drivers – Community Supported (2)

 ActionScript3
– http://www.mongoas3.com

 C
– libmongo-client

 C# and .NET Clojure
– See the MongoDB

Java Language Center
 ColdFusion

– Blog post: Part 1 | Part 2 | Part 3
– http://github.com/virtix/cfmongodb/tr

ee/0.9
– http://mongocfc.riaforge.org/

 D
– Port of the MongoDB C Driver for D
– Dart

 Delphi
– Full featured Delphi interface to

MongoDB built on top of the
mongodb.org supported C driver

– Pebongo
• Early stage Delphi driver for

MongoDB
– TMongoWire

• Maps all the VarTypes of
OleVariant to the BSON types,
implements IPersistStream for
(de)serialization, and uses
TTcpClient for networking

 Entity
– entity driver for mongodb on

Google Code, included within the
standard Entity Library

© 2014 IBM Corporation33

http://code.google.com/p/jmcnet-full-mongo-flex-driver/
http://www.mongoas3.com/
http://github.com/algernon/libmongo-client
http://docs.mongodb.org/ecosystem/drivers/csharp-community-projects/
http://docs.mongodb.org/ecosystem/drivers/java/
https://github.com/marcesher/cfmongodb/
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion.html
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion_20.html
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion_25.html
http://github.com/virtix/cfmongodb/tree/0.9
http://github.com/virtix/cfmongodb/tree/0.9
http://mongocfc.riaforge.org/
http://github.com/itiu/mongo-d-driver
http://pub.dartlang.org/packages/mongo_dart
https://github.com/gerald-lindsly/mongo-delphi-driver
http://docs.mongodb.org/ecosystem/drivers/c/
http://docs.mongodb.org/ecosystem/drivers/c/
http://code.google.com/p/pebongo/
http://github.com/stijnsanders/TMongoWire
http://code.google.com/p/entity-language/wiki/mongodb

MongoDB Drivers – Community Supported (3)

 Erlang
– emongo - An Erlang MongoDB

driver that emphasizes speed
and stability. “The most emo of
drivers.”

– Erlmongo - an almost
complete MongoDB driver
implementation in Erlang

 Factor
 Fantom
 F#
 Go

– gomongo
– go-mongo
– Mgo

 Groovy
– gmongo

• Also see the
Java Language Center

– Blog Post:
• Groovy on Grails in the land of M

ongoDB
– Grails Bates:

• Grails business audit trails plugin
 Javascript
 Lisp

– https://github.com/fons/cl-mongo
 Lua

– LuaMongo on Google Code
– LuaMongo fork on Github

 MatLab
– mongo-matlab-driver

 node.js

© 2014 IBM Corporation34

http://bitbucket.org/rumataestor/emongo
http://github.com/wpntv/erlmongo/tree/master
http://bitbucket.org/liamstask/fantomongo/wiki/Home
http://gist.github.com/218388
http://github.com/mikejs/gomongo
https://github.com/garyburd/go-mongo
http://labix.org/mgo
https://github.com/poiati/gmongo
http://docs.mongodb.org/ecosystem/drivers/java/
http://blog.mongodb.org/post/18510469058/grails-in-the-land-of-mongodb
http://blog.mongodb.org/post/18510469058/grails-in-the-land-of-mongodb
https://github.com/saleram1/grails-bates
https://github.com/saleram1/grails-bates
http://docs.mongodb.org/ecosystem/drivers/javascript/
https://github.com/fons/cl-mongo
http://code.google.com/p/luamongo/
https://github.com/moai/luamongo
https://github.com/gerald-lindsly/mongo-matlab-driver
http://docs.mongodb.org/ecosystem/drivers/node-js/

MongoDB Drivers – Community Supported (4)

 Objective C
– NuMongoDB
– ObjCMongoDB

 OCaml
– Mongo.ml

 PHP
– Asynchronous PHP driver using l

ibevent|
 PowerShell

– mosh Powershell provider for
MongoDB

– mdbc module cmdlets using the o
fficially supported .NET driver

– Doug Finke’s blog post on using
 the original community C# driv
er with PowerShell

 Prolog
 Python

– MongoEngine
– MongoKit
– Django-nonrel
– Django-mongodb
– Django-mongonaut

 R
– rmongodb

• Full featured R interface to
MongoDB built on top of the
mongodb.org supported C driver

– RMongo for R client
• R client to interface with MongoDB

 Racket (PLT Scheme)
– Docs

 REST

© 2014 IBM Corporation35

http://github.com/timburks/NuMongoDB
https://github.com/paulmelnikow/ObjCMongoDB
http://massd.github.io/mongo
https://github.com/kakserpom/phpdaemon
https://github.com/kakserpom/phpdaemon
http://mosh.codeplex.com/
http://mosh.codeplex.com/
https://github.com/nightroman/Mdbc
https://github.com/nightroman/Mdbc
http://dougfinke.com/blog/index.php/2009/10/25/how-to-use-mongodb-from-powershell-and-f/
http://dougfinke.com/blog/index.php/2009/10/25/how-to-use-mongodb-from-powershell-and-f/
http://dougfinke.com/blog/index.php/2009/10/25/how-to-use-mongodb-from-powershell-and-f/
https://github.com/khueue/prolongo
http://mongoengine.org/
http://namlook.github.com/mongokit/
https://github.com/django-nonrel/django-nonrel
http://django-mongodb.org/
https://github.com/pydanny/django-mongonaut
https://github.com/gerald-lindsly/rmongodb
http://docs.mongodb.org/ecosystem/drivers/c/
https://github.com/tc/RMongo
http://planet.plt-scheme.org/display.ss?package=mongodb.plt&owner=jaymccarthy
http://planet.plt-scheme.org/package-source/jaymccarthy/mongodb.plt/1/4/planet-docs/mongodb/index.html
http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/

MongoDB Drivers – Community Supported (5)

 Ruby
– MongoMapper
– rmongo Ruby driver

• An event-machine-based Ruby
driver for MongoDB

– jmongo
• A thin ruby wrapper around the

mongo-java-driver for vastly
better jruby performance.

– em-mongo
• EventMachine MongoDB Driver

(based off of RMongo).
 Scala

– Java Language Center
 Smalltalk

– Squeaksource Mongotalk
– Dolphin Smalltalk

© 2014 IBM Corporation36

http://railstips.org/2009/6/27/mongomapper-the-rad-mongo-wrapper
http://github.com/tmm1/rmongo
http://github.com/chuckremes/jmongo
http://github.com/bcg/em-mongo
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.squeaksource.com/MongoTalk.html
http://www.arcturus.com.au/dolphin/mongodb.html

Nothing Like the Present …….

 In addition to connectivity thru the wire listener, we are offering
meaningful enhancements to Informix for JSON capabilities:
– Native JSON and BSON data storage types

• With functions necessary to manipulate the data as well, in and out.
– Hybrid Applications

• Execute SQL within JSON apps
• Execute JSON within SQL based apps.

– Hybrid database
• Store Relational and non-relational data within the same database
• Join both data organization types within SQL

– Standard MongoDB application performance scaling techniques via sharding
• We do it too, and have for years.
• We call it Enterprise Replication, and now we store on a node (shard) by key value

and load balance the storage across the shards as does MongoDB for scalability.
– Use standard Informix utilities and techniques on both.

• Backup/restore
• Enterprise Replication
• Compression
• Time Series,
• Etc.

© 2014 IBM Corporation37

Summary: What is JSON’s Role in the Enterprise?

 Flexible schema is agile, liberating for application developers

 But will we abandon years of expertise in data
modeling/normalization theory?
– How to maintain control in an enterprise, mission critical DBMS?

 Identification of appropriate applications is critical

 Application deployment procedures need to adapt
– New controls to prevent schema chaos
– Application development groups need to implement controls

 When combining with application that uses relational schema
– Identify portions that need to remain dynamic
– Allocate/accommodate space for that as JSON
– Future – combination of SQL and JSON will make this easier

© 2014 IBM Corporation38

What Data Store Format to Use?

 Consider NoSQL JSON when
– Application and schema subject to frequent changes
– Prototyping, early stages of application development
– De-normalized data has advantages

• Entity/document is in the form you want to save
 Read efficiency – return in one fetch without sorting, grouping, or ORM mapping

– "Systems of Engagement"
• Less stringent "CAP" requirements in favor of speed

 Eventual consistency is good enough
• Social media

 Relational still best suited when these are critical
– Data normalization to

• Eliminate redundancy
• Ensure master data consistency

– Database enforced constraints
– Database-server JOINs on secondary indexes

© 2014 IBM Corporation39

Data Normalization - Choose the Right Solution

NoSQL JSON - Two approaches

Embedded (de-normalized)

Using references

NoSQL JSON - Two approaches

Embedded (de-normalized)

Using references

{dept: "A10",
 deptname:"Shipping",
 manager:"Samuel",
 emp:[
 {empno:"000999",
 lastname:"Harrison",
 edlevel:"16"},
 {empno:"370001",
 lastname:"Davis",
 edlevel:"12"}
]
 proj:[
 {projno:"397",
 projname:"Site Renovation",
 respemp:"370001" },
 {projno:"397",
 projname:"Site Renovation",
 respemp:"370001"} …
]
}

If you need normalization and database-enforced constraints, JSON may not be best choice

{_id
 dept
…
)

{_id
 dept
…
)

{_id
 emp
 dept ref
…
}

{_id
 emp
 dept ref
…
}

{_id
 dept
 emp ref
…
)

{_id
 dept
 emp ref
…
)

Requires
application-

side join

Requires
application-

side join

Chance for
data

redundancy

Chance for
data

redundancy

create table department (
 dept char(3),
 deptname varchar(40),
 manager varchar(20),
 empno integer,
 projno integer);

create table employee(
 empno integer
 lastname varchar(20)
 edlevel smallint);

create table project(
 projno integer,
 projname varchar(20),
 respemp integer);

Unique indexes on department.dept, employee.empno, project.projno
Composite index on department (dept, empno, projno)

Constraints (minimally) :

Between department.empno and employee.empno,
Between department .projno and project.projno

Possibility exists of mistyped data with the NoSQL
schema.
Application joins a must

No mismatched data types on Informix.
No Application Joins.

© 2014 IBM Corporation40

Using Schema-less Model In a Traditional Environment

 During prototyping, early development, validation
– As system stabilizes, stable schema parts could be moved to

relational columns

 For cases where web message or document will be retrieved as-is
– Yet retrieval on internal fields is needed

 When parts of the schema will always be dynamic

© 2014 IBM Corporation41

JSON and Informix – Complementary Technologies

 Does NoSQL mean NoDBA? NoInformix?
– Definitely not - the relational database isn’t going away anytime soon
– IBM sees JSON as becoming a complementary technology to relational

 Transactional atomicity is essential for mission critical
business transactions
– Informix JSON solution brings commits, transaction scope

 Informix was the first to store relational and non-relational datatypes
side by side 16+ years ago and allow hybrid apps.

 Choice for developers.

© 2014 IBM Corporation42

JSON and Informix – Complementary Technologies
 What do we offer a developer – Think Hybrid:

– Hybrid database,
– Hybrid applications,
– Multi and single statement transactions,
– Partial transactions,
– Compression,
– Free backup/restore utilities (with or without a free provided storage manager to

disk, tape or remote storage),
– Sharding,
– Scale in/out,
– Replication,
– Shared disk,
– Connection manager,
– User Definable Data Types
– Spatial, Time Series, Basic Text Search
– Full JSON/BSON support natively
– Configurable Autonomics
– Free Informix Developer Edition

 We are the hybrid applications solution … again. Right now.
Informix © 2014 IBM Corporation43

JSON and Informix – User Experience Quotes

 “This is just the beginning of the possibilities for this hybrid development
structure. I believe this structure will be more common in the future of app
creation than simply choosing only SQL or only NoSQL. The more tools are
given to developers, the more creative they can be and more choices they
have for tackling their problems. That is what developers want, reliable and
varied tools to solve their problems. Informix is working hard to provide that
with the JSON Listener. This technology will help drive the next generation of
web based applications in an industry where time is precious, rapid
prototyping is preferred and scalability is key. With NoSQL capabilities
infused to IDS, Informix is off to a great start.” –

 Hector Avala – Software Developer and College Student

© 2014 IBM Corporation44

Questions?

© 2014 IBM Corporation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

