

Wieso eignet sich Informix besonders für das Internet der Dinge?

Alexander Körner akoerner@de.ibm.com

Flexible and Scalable Sensor Data Management

For Industry 4.0 and the IoT. In the Cloud and on the Edge by IBM

3

A typical "IoT-/Industrie 4.0" Scenario

Industrial IoT-/Edge-Gateway(s) with specific industry communication stacks and local Analytic capabilties (in motion / at rest analytics)

A Simplified IoT/Industry 4.0 Sensor Data Flow

What are the IoT/Industry 4.0 Analytics Requirements for the Cloud?

- Requirements:
 - -Potentially 1000's of servers means zero administration is a must
 - Data volume adds up very quickly so low storage overhead is required
 - Data flows into the cloud continuously and must be processed in real-time
 - Must be able to handle time series, spatial, and NoSQL data natively
- Additional requirements
 - Must be able to scale-out
 - Must be available as a service

The database must be able to *ingest, process and analyze* data in real-time

What are the Analytics Requirements for an IoT (Edge-) Gateway?

- Very similar core requirements to the Cloud, but...
 - Have a small install footprint, less than 100 MB
 - -Run with low memory requirements less than 256 MB
 - Use compression or other techniques to minimize storage space
 - Have built-in support for common types of IoT data like time series and spatial/GIS data
 - Simple application development with support for both **NoSQL and SQL**
 - It must require **absolutely no administration**
 - Ideally it should be able to network multiple gateways together to create a single distributed database

The database must be powerful enough to *ingest, process* and analyze data in real-time

IBM

Sensor Data Management – A typical Approach

Sensor_ID	TimeStamp	phase1	phase2	 temp			
1	2010-06-01 00:00	1.3	0	15.6	Г		
1	2010-06-01 00:30	1.6	0	15.6			
1	2010-06-01 01:00	1.4	0	15.5			
1	2010-06-01 01:30	1.4	0	15.4		G	
1	2010-06-01 02:00	1.4	0	15.5		Image: Note of the second seco	
						₹	
2	2010-06-01 00:00	0.4	0	12.3		Ъ	
2	2010-06-01 00:30	0.3	0	12.3			
2	2010-06-01 01:00	0.2	0	12.2		L	7
2	2010-06-01 01:30	0.5	0	12.3			/
						\bigvee	
3	2010-06-01 00:00	0.0	3.5	13.6			
3	2010-06-01 00:03	0.0	4.3	12.2			

Each row stores only the values for one meter per measurement = Billions of data rows (8)

- Meter IDs and time stamps need to be stored in each record = Storage overhead 😣
- Additional Indexes are required for fast data access = Even more additional storage 🛞

IBN

Sensor Data Managemet – The IBM Informix Advantage

Sensor_ID	Origin	00:00	00:30	01:00	01:30	
1	2010-06-01	(1.3,015.6)	(1.6,015.5)	(1.4,015.5)	(1.4,015.4)	
2	2010-06-01	(0.4,012.3)	(0.3,012.3)	(0.2,012.2)	(0.5,012.3)	
3	2010-06-01	{v1: 1.5}	{v1: 9.1}	{v1: 0.3}	{v1:0.3,v2:4}	

• Only one data row per sensor (e.g. Smart Meter)

- Time series elements can be JSON documents
- Built-In time series data high performance loader API (> 60000 values/sec/CPU core)
- Simplified application development (>100 built-in SQL time series functions)
- Available also for embedded platforms (e.g. ARM or Intel Quark CPUs)

That leads to...

(*) For regular Time Series

Growth

...reduced disk space usage (about 60% less) © ...significantly increased performance and scalability © ...faster data load and access ©

- Workload: data Ingestion, data cleanup, and a daily billing cycle

Metric	Competitor	Informix
Daily processing time	11 hours	5 hour 50 min
Maximum number of cores used	62	22
Size of database per month of data	15TB	5TB
# Records processed each day	2.88 Billion	2.88 Billion
Billing determinants creation (1/21 of the total meter population)	51,322	~2 million reads per second

IBM Analytics

- 30 million smart meters sending data every 15 minutes

- 2.88 billion records inserted each day

Proof Point 2: Oncor's Advanced Meter System (Texas, USA) Now in Production with > 3.5 million meters!

for a smarter planet

- Very Successful Meter Data Management Scalability PoC
- Informix took about 18 minutes to validate and load a day's worth of data for 1 million meters (data collected at 15 minute intervals)
 - Their prior RDBMS took about 5 hours
- Informix took about 6 minutes for each mandatory ERCOT compliance report and about 25 seconds if the data was already cached in memory
 - Their prior RDBMS took from 2 to 3 hours depending on the report
- Disk space used by Informix was about 350 GB
 - Their prior RDBMS used about **1.3TB** for the POC
 - Their estimate for storing 3 years worth of 3.5 million meters was **55 TB**
 - Our estimate for 3 years worth of 3.5 million meters using the Informix TimeSeries was 15 TB
- Results were very linear for Informix
 - Better results if you increase cpus and storage
 - If less performance is OK then cpus and storage can be reduced

Use Case 2: Energy Optimization - Misurio AG (Switzerland)

a stharter planet

- The Misurio AG (Visp, Switzerland) is focusing on mathematical optimizations for the E&U industry
 - Lead product: The EnergyOn Platform
 - Input: Time series data from different data sources (energy data, meteorological data, energy markets etc.)
 - Output: Price- and demand-forecast with adjustable accuracies

- The Problem: The original sensor database (MySQL) for the Misurio Optimizer didn't scale with the growing requirements of Misurio's customers
- The Solution: Informix 12.10 with optimized TimeSeries, JSON and REST support as the new sensor database for the Misurio Optimizer

Misurio Optimizer Applications

Simplified application development: Just one hybrid and embeddable Informix DB instead of multiple, separate data sources

IBM Analytics

Proof Point 3: Informix vs SQLite Embedded Platform Benchmark

a stharter planet

Tests on Intel Quark	Informix	SQLite
Data loading – high-speed performance (records per second)	950 / 1050 (DK100 / DK50) ¹	700 (Average) ²
Storage space that is required for 1 day of data	275 MB	1200 MB
Aggregation query (seconds)	2 secs	4-25 secs
Moving average (seconds)	25 secs	259200 ³ secs
Missing interval search (seconds)	2 secs	14-30 secs

- 1. The two figures for data loading with Informix reflect a slight difference in performance between the DK100 and DK50. DK100 had more running components causing a drop in performance vs DK50
 - 2. Data loading with SQLite had significant variations in load performance as the database size increased.
- 3. The moving average result for SQLite is a projected figure that is based on a partial result after 10 minutes.

IoT/Industry 4.0 Architecture Annotated with IBM Products

Some IoT-/Industry 4.0-Gateway Use Cases...

Industrial Production

- Local Shop Floor Sensor Data (Pre-)Processing / Cleansing / Monitoring (Predictive)
- Shop Floor Communication Protocol consolidation (Industrial Cloud Gateway with Analytic Capabilities)

Automotive

- On-Vehicle Data Buffering / Processing / Monitoring (Predictive)

Smart Facility-/Building-Management

- In-Building Sensor and Actor Data Collection and Control
- Local Energy Optimization Capabilities with Cloud Access for more Complex Optimizations

Sports Statistics / Fan Experience

 In-Stadium Sensor based Statistics (Ball, Player and Referee Positions, Movements, Goals/Touchdowns)

Wind Turbine Monitoring

 Off-Site or Off-Shore locations with limited communication bandwidth require local operation data monitoring to optimize preventive maintenance

IBM

How does Gateway Sensor Data processing helps IoT solutions?

IoT Gateways can reduce the cost of the backend cloud

- Reduces cloud storage by filtering/aggregating/analyzing data locally

for a smarter planet

- Reduces cloud CPU requirements by precomputing values

Support of Real-Time requirements

 Intelligent gateways can detect and respond to local events as they happen rather than waiting for transfer to the cloud

Sensor Data Analytics move close to the data

 Gateways allow customers to capture and get value from their sensors without necessarily sending all data into the cloud

Protocol Consolidation

- Cloud does not need to implement the multitude of IoT protocols

Data Quality Optimization

– Duplicate elimination, Data Cleansing, Missing Values Handling, Sorting etc.

IBM

IBM Powered / Cloud-Integrated IoT-/Edge-Gateways

a stnarter

Custom M2M/IoT Gateways MQTT, Informix OSGi based Custom Protocol Stack

netIOT Edge Gateway for Industrie 4.0/IoT MQTT, Informix, SPSS Industry Communication Protocols

mGuard Security Gateway QRadar SIEM

Summary: Informix - The Sensor Data optimized Hybrid Database

 Superior IoT Sensor Data Performance and Scalability in the Cloud, on Premises and on Edge Gateways

for a smarter planet

- Innovative Sensor Data Storage and Processing w/o the need for costly all-or-nothing In-Memory database technologies
- Large Scale and Embedded Sensor Data Benchmarks
- Simplified Application Development due to Integration of all Sensor Data relevant data types in one hybrid Database
 - Relational, Time Series, JSON and Geospatial (all joinable!)
 - JSON based Time Series for full Schema Flexibility
 - Free Developer Editions and Docker Images available
- Open, Standardized APIs allow easy Integration into existing Architectures
 - SQL, REST, MongoDB, Node-RED, MQTT, JDBC, ODBC, .NET etc.

Very Cost Effective Operations in all Deployment Models

- Very efficient HW utilization (less disk space, less CPU & Memory) compared to other approaches
- Attractive license models

Watson IoT Platform & Streams

- Quarks for edge analytics on device or gateway
 - Lightweight embedded streaming analytics runtime
 - Analyze events locally on the edge
 - Reduce communication costs by only sending relevant events
- IBM Watson IoT Platform for optional device hub
 - Device management
 - MQTT message broker
- IBM Streams for streaming analytics
 - High performance, full featured streaming analytics
 - Build windows of state and correlate across devices
 - Have access to data-of-record systems, e.g. medical history
 - Control edge device based upon analytics
 - Central job management/health summary
 - Automatic application connectivity

IBM Analytics IB


```
IBM Analytics
In-Motion & At-Rest Analytics on the Edge: QUARKS & Informix
           DirectProvider tp = new DirectProvider();
           Topology t = tp.newTopology("InformixQuarksSensorTagMQTT");
           JdbcStreams mydb = new JdbcStreams(t, () -> InformixConnector.getIfxDataSource(),
                   (dataSource) -> dataSource.getConnection() );
          MqttConfiq mqttConfiq = new MqttConfig("tcp://localhost:1883", "");
          MqttStreams mqtt = new MqttStreams(t, () -> mqttConfig);
                                                                            Create a new Quarks stream from an MQTT queue
          TStream<String> msgs = mqtt.subscribe("sensortag/cc2650", 0);
           msgs = msgs.map(tuple -> new JSONObject(new JSONObject(tuple), new String[] {"tstamp","lux"}).toString());
          mydb.executeStatement(msgs,
            () -> "INSERT into quarks json ts v values (?,?,?)",
            (g, stmt) -> { String ts = EpochtoTS(new JSONObject(g).getLong("tstamp"));
                          stmt.setString(1, "RAW");
                                                                Insert raw sensor data from stream into an Informix time series
                          stmt.setString(2, ts);
                          BSONObject bson = new BasicBSONObject("value r", new JSONObject(g).getDouble("lux"));
                          stmt.setObject(3, new IfxBSONObject(bson));
          });
          mqtt.publish(msqs, "values/raw", 0, false);
          TStream<String> threshold = mydb.executeStatement(msgs,
                   () -> "select elem.timestamp, elem.value FROM (select GetLastElem(Apply('TSRunningAvg($value r, 30)',
                                                          CURRENT - 30 UNITS SECOND, CURRENT, sensor values)::TimeSeries(one value t))
                             from quarks json ts where sensor id = ?) AS t(elem);",
                   (q, stmt) -> stmt.setString(1,"RAW"),
                                                               Dynamically calculate moving average from raw time series data
                   (q, rs, exc, consumer) -> {
                          if (exc != null) { System.err.printl...
                          else {
                                 rs.next();
                                 Double last = rs.getDouble("value");
                                 String ts = rs.getString("timestamp");
                                 JSONObject jo = null;
                                 if (ts != null)
                                   jo = new JSONObject().put("threshold", setThresholdValue(last)).put("tstamp", TStoEpoch(ts));
                              consumer.accept(jo.toString());
                  );
          mqtt.publish(threshold, "values/threshold", 0, false) Apply dynamic moving average as a dynamic filter to the stream
          msgs = msgs.filter(tuple -> new JSONObject(tuple).getDouble("lux") > thresholdValue);
```

What is Node-Red?

- nodered.org
- A visual tool for wiring the Internet of Things
- Node.js application. Uses building blocks of reusable code to control flow of data

Node-RED A visual tool for wiring the Internet of Things

- "Flows" are created to process data.
- Example: Take data in, transpose, process and store in a database and/or publish to a message broker
- Collaboration among node developers

The Watson IoT Platform our next generation IoT platform

stnarter

IBM IoT Foundation Offerings

IBM IoT Foundation Connect

Attach, Collect & Organize, Device Management, Secure Connectivity, Visualization

IBM IoT Foundation Information Management

Storage & Archive, Metadata Management, Reporting, Streaming data, Parsing and Transformation, Manage unstructured data

IBM IoT Foundation Analytics

Predictive, Cognitive, Real-time, and Contextual

IBM IoT Foundation Risk Management

Security Analytics, Data Protection, Auditing/Logging, Firmware Updates, Key/Cert Mgmt, Org Specific Security

What is Bluemix?

Bluemix is an **open-standards**, cloud-based **platform** for **building**, **running**, **and managing applications**.

Build your apps, your way

Use the most prominent compute technologies to power your app: Cloud Foundry, Docker, OpenStack.

Scale more than just instances

Development, monitoring, deployment, and logging tools allow the developer to run and manage the entire application.

Extend apps with services

A catalog of IBM, third party, and open source services allow the developer to stitch an application together quickly. Deploy and manage hybrid apps seamlessly

Get a seamless dev and management experience across a number of hybrid implementations options.

Layered Security

IBM secures the platform and infrastructure and provides you with the tools to secure your apps.

Flexible Pricing

Try compute options and services for free and, when you're ready, pay only for what you use. Pay as you go and subscription models offer choice and flexibility.

My IoT@Home Project ©

 An Informix TimeSeries, REST API, JSON & Raspberry Pi 2 based Weather Station...

Alexander Koerner

Analytics Architect IBM Analytics Industrie 4.0 & IoT Informix SME

Hollerithstrasse 1 D-81829 Muenchen Mail: Postfach 820364 D-81803 Muenchen

Phone +49-89 4504 1423 Fax +49-160 90737756 Mobile +49-160 90737756 akoerner@de.ibm.com

Twitter: @AlexKoeMUC

Backup Slides

a stharter planet

Proof Point 4: Informix / AMTSybex 100 Mio Meter Benchmark

10 Million Meter Benchmark Results (36 minutes - total time)

Process	Elapsed Time	Avg. Throughput Rate
Preparation and Technical Verification	10 min 02 sec	797,342 records/sec
Data Load	13 min 56 sec	457,162 records/sec
Validation, Estimation, and Editing (VEE)	11 min 18 sec	707,964 records/sec

100 Million Meter Benchmark Results (7 hrs 35 minutes – total time)

Process	Avg. Elapsed Time	Avg. Throughput Rate
Preparation and Technical Verification	2 hrs 10 min	628,205 records/sec
Data Load	3 hrs 14 min	420,962 records/sec
Validation, Estimation, and Editing (VEE)	2 hrs 11 min	623,409 records/sec

Benchmark Results

- End to end processing time of 36 minutes for **10** Million meters at 30 minute intervals.
- End to end processing time of < 8 hours for **100** Million meters including billing queries.
- Processed 31 days of data using <4TB of XIV storage on a single 16 core Power 750 machine.
- Overall processing time remained constant with increased historical data.
- Storage used remained linear with increasing data.

Informix Time Series Data Pattern Matching Search

A Search tool for finding similar looking patterns not just an exact match

A scenario of pattern matching for abnormal power usage detection

IBM

Spatiotemporal Search (STS) for Moving Objects

Manage location data (eg. GPS data) in an Informix TimeSeries

- Time based analysis

Use Cases

- Find the location of a moving object at a specific time
- Find the last known time and location of a specific moving object
- -Find when a moving object was in a region around a point of interest
- Find the trajectories of moving objects near a point of interest during a time range
- ...and more

Build index structures

- Time range and spatial analysis
- Using R-Tree indexing

Operations

- -Location questions base on time or timerange
- Time questions base on location
- Time and location questions

Time Series data & JSON Integration

- Schema flexibility for time series applications
- Create a time series that contains JSON documents
- JSON documents are unstructured data
- No schema changes required, if the structure of the data changes

are for a smarter planet [1]

- Easy to load and query the data
- Ability to store time-based data as JSON / BSON docs
- Each JSON data element is accesible for time series functions (e.g. for aggregation)
- Supports time series manipulation through the MongoDB- & REST-API

IBM Informix 12.10 on ARM

Full Informix 12.10 Edition, with TimeSeries and GeoSpatial

a stharter plane

- Minimum Informix 12.10 ARM System Requirements
 - -Supported ARM processors
 - ARM V6 (armv6l)
 - ARM V7 (armv7l) with floatingpoint support
 - -Minimum 256 MB RAM (for Linux and Informix), recommended 512 MB
 - -Storage space for the database files (e.g. SSD, SD, microSD etc.)
 - Minimum product deployment diskspace (w/o database files, customizable): < 100 MB
 - One of the following supported Linux distributions for ARM
 - Debian
 - Ubuntu
 - Raspian Wheezy / Jessie
 - Support for other Linux distributions upon request
 - Free Developer Editions available!

IBM Informix 12.10 on Intel Quark / Atom

- Full Informix 12.10 Edition, with TimeSeries and GeoSpatial
- Minimum requirments for Informix 12.10 on Quark / Atom
 - -400MHz 32-bit Intel® Pentium
 - –Minimum 256 MB RAM (for Linux and Informix), recommended 512 MB
 - -Writable media like SSD, SD, microSD for Database data
 - -Mimimum disk space for the database < 100 MB
 - -Linux Distributionen for Galileo board
 - Debian
 - Wind River Linux

IBM Informix's optional In-Memory Technology for Sensor Data Warehouses

IBM

Informix (In-Memory) Warehouse Accelerator (IWA)

Example for the IWA / Sensor Data Performance

- Use Case: 280000 simulated smart meters, 12 months of data, 15 minute intervals
 - About 9.8 billion measurements
 - About 232 GB in Memory consumption (compared to 524 GB on Disk in time series format or about 1.3 TB in relational format w/o Indexes)
- Execution of the following SQL-Query:

```
SELECT METER_ID, YEAR(TIME_OF_MEASUREMENT) As JAHR,
COUNT(*) AS ANZAHL,
SUM (R.AVG) AS VERBRAUCH,
MIN (TIME_OF_MEASUREMENT) MIN_TOM,
MAX (TIME_OF_MEASUREMENT) MAX_TOM,
MIN (HT) MIN_HT,
MAX (HT) MAX_HT,
MAX (HT) - MIN (HT) AS VEBRAUCH_AUS_HT
FROM READINGS_TAB R
WHERE TIME_OF_MEASUREMENT >= "2013-04-01 00:00:00.00000"::DATETIME YEAR TO
FRACTION(5)
AND TIME_OF_MEASUREMENT <= "2014-03-31 23:45:00.00000"::DATETIME YEAR TO FRACTION(5)
GROUP BY 1, 2
ORDER BY 1, 2;
```

- The measured run time for that query (incl. the transfer of the 560000 result records to the client) was only about 58 seconds! ⁽ⁱ⁾
 - If the query only fetched the first 2 data rows, the run time was about 43 seconds

Links

- IBM Informix Database (Hybrid Sensor Database)
 - http://www-01.ibm.com/software/data/informix/
- IBM Informix product downloads (incl. free editions)
 - http://www-01.ibm.com/software/data/informix/downloads.html
- IBM Informix on the Raspberry Pi (HowTos)
 - https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=97199&p=674959 (Informix Intro and Installation)
 - <u>https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=97772&p=678497</u> (An Informix Sensor DB Part 1)
 - <u>https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=100029&p=693935</u> (An Informix Sensor DB Part 2)
 - <u>https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=137392&p=912405</u> (The Informix REST API)

for a smarter planet

- <u>https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=140398</u> (Round robin sensor data storage with IBM Informix)
- IBM Redbook about the Informix TimeSeries Technology
 - http://www.redbooks.ibm.com/abstracts/sg248021.html?Open
- IBM Internet of Things Foundation
 - http://internetofthings.ibmcloud.com/
- IBM Bluemix
 - http://www.ibm.com/software/bluemix/
- Node-RED
 - http://nodered.org/